Institute for Mathematical Physics Compactness of the Solution Operator to ∂ in Weighted L 2 -spaces
نویسندگان
چکیده
In this paper we discuss compactness of the canonical solution operator to ∂ on weigthed L spaces on C. For this purpose we apply ideas which were used for the Witten Laplacian in the real case and various methods of spectral theory of these operators. We also point out connections to the theory of Dirac and Pauli operators.
منابع مشابه
Institute for Mathematical Physics Compactness of the ∂–neumann Operator on Weighted (0,q)–forms
As an application of a characterization of compactness of the ∂-Neumann operator we derive a sufficient condition for compactness of the ∂-Neumann operator on (0, q)-forms in weighted L 2-spaces on C n .
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کامل